Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Expert Rev Mol Diagn ; 24(1-2): 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38275158

ABSTRACT

INTRODUCTION: Major organ-based in vitro diagnostic (IVD) tests like ALT/AST for the liver and cardiac troponins for the heart are established, but an approved IVD blood test for the brain has been missing, highlighting a gap in medical diagnostics. AREAS COVERED: In response to this need, Abbott Diagnostics secured FDA clearance in 2021 for the i-STAT Alinity™, a point-of-care plasma blood test for mild traumatic brain injury (TBI). BioMerieux VIDAS, also approved in Europe, utilizes two brain-derived protein biomarkers: neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP). These biomarkers, which are typically present in minimal amounts in healthy individuals, are instrumental in diagnosing mild TBI with potential brain lesions. The study explores how UCH-L1 and GFAP levels increase significantly in the bloodstream following traumatic brain injury, aiding in early and accurate diagnosis. EXPERT OPINION: The introduction of the i-STAT Alinity™ and the Biomerieux VIDAS TBI blood tests mark a groundbreaking development in TBI diagnosis. It paves the way for the integration of TBI biomarker tools into clinical practice and therapeutic trials, enhancing the precision medicine approach by generating valuable data. This advancement is a critical step in addressing the long-standing gap in brain-related diagnostics and promises to revolutionize the management and treatment of mild TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Humans , Glial Fibrillary Acidic Protein , Ubiquitin Thiolesterase , Brain Injuries, Traumatic/diagnosis , Biomarkers , Hematologic Tests , Diagnostic Tests, Routine
2.
Exp Neurol ; 369: 114533, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666386

ABSTRACT

Traumatic brain injury (TBI) leads to long-term impairments in motor and cognitive function. TBI initiates a secondary injury cascade including a neuro-inflammatory response that is detrimental to tissue repair and limits recovery. Anti-inflammatory corticosteroids such as dexamethasone can reduce the deleterious effects of secondary injury; but challenges associated with dosing, administration route, and side effects have hindered their clinical application. Previously, we developed a hydrolytically degradable hydrogel (PEG-bis-AA/HA-DXM) composed of poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) for local and sustained dexamethasone delivery. In this study, we evaluated the effect of locally applied PEG-bis-AA/HA-DXM hydrogel on secondary injury and motor function recovery after moderate controlled cortical impact (CCI) TBI. Hydrogel treatment significantly improved motor function evaluated by beam walk and rotarod tests compared to untreated rats over 7 days post-injury (DPI). We also observed that the hydrogel treatment reduced lesion volume, inflammatory response, astrogliosis, apoptosis, and increased neuronal survival compared to untreated rats at 7 DPI. These results suggest that PEG-bis-AA/HA-DXM hydrogels can mitigate secondary injury and promote motor functional recovery following moderate TBI.

3.
Shock ; 60(2): 248-254, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37267223

ABSTRACT

ABSTRACT: Several studies have demonstrated the clinical utility of tranexamic acid (TXA) for use in trauma patients presenting with significant hemorrhage. Tranexamic acid is an antifibrinolytic that inhibits plasminogen activation, and plasmin activity has been shown to mitigate blood loss and reduce all-cause mortality in the absence of adverse vascular occlusive events. Recent clinical developments indicate TXA is safe to use in patients with concomitant traumatic brain injury (TBI); however, the prehospital effects are not well understood. Importantly, TXA has been associated with seizure activity. Therefore, this study sought to evaluate the effects of early administration of TXA on neurological recovery and electroencephalogram (EEG) abnormalities following penetrating TBI with concomitant hypoxemia and hemorrhagic shock. We hypothesized that early administration of TXA will provide hemodynamic stabilization and reduce intracerebral hemorrhage, which will result in improved neurological function. To test this hypothesis, Sprague-Dawley rats received a unilateral, frontal penetrating ballistic-like brain injury by inserting a probe into the frontal cortex of the anesthetized rat. Five minutes following brain injury, animals underwent 30 min of respiratory distress and 30 min of hemorrhage. Upon completion of the hemorrhage phase, animals received the initial dose of drug intravenously over 10 min after which the prehospital phase was initiated. During the prehospital phase, animals received autologous shed whole blood as needed to maintain a MAP of 65 mm Hg. After 90 min, "in-hospital" resuscitation was performed by administering the remaining shed whole blood providing 100% oxygen for 15 min. Upon recovery from surgery, animals were administered their second dose of vehicle or TXA intravenously over 8 h. Tranexamic acid induced an early improvement in neurologic deficit, which was statistically significant compared with vehicle at 24, 48, and 72 h at three doses tested. Analysis of cerebral hemoglobin content and intracerebral lesion progression revealed 100 mg/kg provided the optimal effects for improvement of neuropathology and was continued for determination of adverse treatment effects. We observed no exacerbation of cerebral thrombosis, but TXA treatment caused an increased risk of EEG abnormalities. These results suggest that TXA following polytrauma with concomitant brain injury may provide mild neuroprotective effects by preventing lesion progression, but this may be associated with an increased risk of abnormal EEG patterns. This risk may be associated with TXA inhibition of glycine receptors and may warrant additional considerations during the use of TXA in patients with severe TBI.


Subject(s)
Antifibrinolytic Agents , Brain Injuries, Traumatic , Brain Injuries , Head Injuries, Penetrating , Multiple Trauma , Tranexamic Acid , Animals , Rats , Tranexamic Acid/therapeutic use , Rats, Sprague-Dawley , Hemorrhage/drug therapy , Hemorrhage/etiology , Antifibrinolytic Agents/therapeutic use , Multiple Trauma/complications , Multiple Trauma/drug therapy , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Brain Injuries/drug therapy , Head Injuries, Penetrating/drug therapy , Electroencephalography/adverse effects , Fibrin
4.
Free Radic Biol Med ; 198: 44-58, 2023 03.
Article in English | MEDLINE | ID: mdl-36758906

ABSTRACT

Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.


Subject(s)
Brain Injuries, Traumatic , Calcium , Rats , Male , Animals , Calcium/metabolism , Brain Injuries, Traumatic/pathology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Apoptosis/physiology , Mitochondria/metabolism
5.
J Neurotrauma ; 38(20): 2907-2917, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34269621

ABSTRACT

Civilian traumatic brain injury (TBI) guidelines recommend resuscitation of patients with hypotensive TBI with crystalloids. Increasing evidence, however, suggests that whole blood (WB) resuscitation may improve physiological and survival outcomes at lower resuscitation volumes, and potentially at a lower mean arterial blood pressure (MAP), than crystalloid after TBI and hemorrhagic shock (HS). The objective of this study was to assess whether WB resuscitation with two different MAP targets improved behavioral and histological outcomes compared with lactated Ringer's (LR) in a mouse model of TBI+HS. Anesthetized mice (n = 40) underwent controlled cortical impact (CCI) followed by HS (MAP = 25-27 mm Hg; 25 min) and were randomized to five groups for a 90 min resuscitation: LR with MAP target of 70 mm Hg (LR70), LR60, WB70, WB60, and monitored sham. Mice received a 20 mL/kg bolus of LR or autologous WB followed by LR boluses (10 mL/kg) every 5 min for MAP below target. Shed blood was reinfused after 90 min. Morris Water Maze testing was performed on days 14-20 post-injury. Mice were euthanized (21 d) to assess contusion and total brain volumes. Latency to find the hidden platform was greater versus sham for LR60 (p < 0.002) and WB70 (p < 0.007) but not LR70 or WB60. The WB resuscitation did not reduce contusion volume or brain tissue loss. The WB targeting a MAP of 60 mm Hg did not compromise function versus a 70 mm Hg target after CCI+HS, but further reduced fluid requirements (p < 0.03). Using LR, higher achieved MAP was associated with better behavioral performance (rho = -0.67, p = 0.028). Use of WB may allow lower MAP targets without compromising functional outcome, which could facilitate pre-hospital TBI resuscitation.


Subject(s)
Blood Pressure/drug effects , Blood Transfusion/methods , Brain Injuries, Traumatic/therapy , Ringer's Lactate/therapeutic use , Shock, Hemorrhagic/therapy , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Emergency Medical Services , Fluid Therapy , Male , Maze Learning , Mice , Mice, Inbred C57BL , Psychomotor Performance , Resuscitation , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/psychology , Treatment Outcome
6.
J Neurotrauma ; 38(17): 2454-2472, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33843262

ABSTRACT

Loss of plasmalemmal integrity may mediate cell death after traumatic brain injury (TBI). Prior studies in controlled cortical impact (CCI) indicated that the membrane resealing agent Kollidon VA64 improved histopathological and functional outcomes. Kollidon VA64 was therefore selected as the seventh therapy tested by the Operation Brain Trauma Therapy consortium, across three pre-clinical TBI rat models: parasagittal fluid percussion injury (FPI), CCI, and penetrating ballistic-like brain injury (PBBI). In each model, rats were randomized to one of four exposures (7-15/group): (1) sham; (2) TBI+vehicle; (3) TBI+Kollidon VA64 low-dose (0.4 g/kg); and (4) TBI+Kollidon VA64 high-dose (0.8 g/kg). A single intravenous VA64 bolus was given 15 min post-injury. Behavioral, histopathological, and serum biomarker outcomes were assessed over 21 days generating a 22-point scoring matrix per model. In FPI, low-dose VA64 produced zero points across behavior and histopathology. High-dose VA64 worsened motor performance compared with TBI-vehicle, producing -2.5 points. In CCI, low-dose VA64 produced intermediate benefit on beam balance and the Morris water maze (MWM), generating +3.5 points, whereas high-dose VA64 showed no effects on behavior or histopathology. In PBBI, neither dose altered behavior or histopathology. Regarding biomarkers, significant increases in glial fibrillary acidic protein (GFAP) levels were seen in TBI versus sham at 4 h and 24 h across models. Benefit of low-dose VA64 on GFAP was seen at 24 h only in FPI. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) was increased in TBI compared with vehicle across models at 4 h but not at 24 h, without treatment effects. Overall, low dose VA64 generated +4.5 points (+3.5 in CCI) whereas high dose generated -2.0 points. The modest/inconsistent benefit observed reduced enthusiasm to pursue further testing.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Pyrrolidines/therapeutic use , Vinyl Compounds/therapeutic use , Animals , Behavior, Animal , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Rats , Rats, Sprague-Dawley , Recovery of Function
7.
Shock ; 55(4): 545-553, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32925600

ABSTRACT

ABSTRACT: Prehospital resuscitation using whole blood (WB) is the standard of care for hemorrhagic shock (HS) but there is no consensus recommendation for resuscitation in the presence of traumatic brain injury (TBI) due to a lack of sufficient evidence. In order to evaluate the optimal resuscitation strategies for TBI+HS, Sprague-Dawley rats were randomized into four groups based on resuscitation fluid and prehospital mean arterial pressure (MAP) threshold (n = 9-10/group): Lactated Ringer's (LR)-60 mm Hg (LR60), LR-70 mm Hg (LR70), WB-60 mm Hg (WB60), WB-70 mm Hg (WB70). All groups received a frontal penetrating ballistic-like brain injury followed by a 35-min period of HS. During the prehospital phase, rats received an initial bolus of resuscitation fluid (WB or LR) followed by LR as needed to maintain MAP above the designated threshold for 90 min. During the in-hospital phase, rats received definitive resuscitation with shed WB. Physiological parameters were recorded continuously and cerebral edema was measured at 3 and 24 h postinjury. The WB60 group demonstrated a significantly lower prehospital fluid requirement compared WB70, LR60, and LR70 (P < 0.05). Compared to the respective LR groups, both the WB60 and WB70 groups also demonstrated improved MAP, cerebral perfusion pressure, brain tissue oxygen tension, and cerebral edema. The edema benefits were observed at 3 h, but not 24 h postinjury, and were localized to the injury site. Together, these results provide evidence that prehospital WB resuscitation and lower MAP resuscitation thresholds can reduce the prehospital fluid requirement while still maintaining critical cerebral physiology in a model of HS and concomitant TBI.


Subject(s)
Blood Transfusion , Fluid Therapy , Head Injuries, Penetrating/therapy , Hemorrhage/therapy , Resuscitation , War-Related Injuries/therapy , Animals , Disease Models, Animal , Emergency Medical Services , Health Resources , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Resuscitation/methods
8.
Neurocrit Care ; 34(3): 781-794, 2021 06.
Article in English | MEDLINE | ID: mdl-32886294

ABSTRACT

BACKGROUND: Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS: C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS: LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION: WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Brain Injuries, Traumatic/therapy , Disease Models, Animal , Isotonic Solutions/pharmacology , Mice , Mice, Inbred C57BL , Resuscitation , Ringer's Lactate , Shock, Hemorrhagic/therapy
9.
J Neurotrauma ; 38(5): 628-645, 2021 03.
Article in English | MEDLINE | ID: mdl-33203303

ABSTRACT

Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-µg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 µg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.


Subject(s)
Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/drug therapy , Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Sprague-Dawley , Treatment Outcome
10.
Front Neurosci ; 14: 915, 2020.
Article in English | MEDLINE | ID: mdl-33071724

ABSTRACT

Severe traumatic brain injury (TBI) is a risk factor for neurodegenerative diseases. Yet, the molecular events involving dysregulated miRNAs that may be associated with protein degradation in the brain remains elusive. Quantitation of more than 800 miRNAs was conducted using rat ipsilateral coronal brain tissues collected 1, 3, or 7 days after penetrating ballistic-like brain injury (PBBI). As a control for each time-point, Sham-operated animals received craniotomy alone. Microarray and systems biology analysis indicated that the amplitude and complexity of miRNAs affected were greatest 7 day after PBBI. Arrays and Q-PCR inferred that dysregulation of miR-135a, miR-328, miR-29c, and miR-21 were associated with altered levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), PSEN1, PSEN2, and amyloid precursor protein (APP) genes. These events were followed by increased levels of mature BACE1 protein and concomitant loss of full length APP within 3-7 days, then elevation of amyloid beta (Aß)-40 7 days after PBBI. This study indicates that miRNA arrays, coupled with systems biology, may be used to guide study design prior validation of miRNA dysregulation. Associative analysis of miRNAs, mRNAs, and proteins within a proposed pathway are poised for further validation as biomarkers and therapeutic targets relevant to TBI-induced APP loss and subsequent Aß peptide generation during neurodegeneration.

11.
Data Brief ; 30: 105657, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32426430

ABSTRACT

This article provides information regarding the effect of four common high abundant protein (albumin and immunoglobulins (Ig)) depletion strategies upon serum proteomics datasets derived from normal, non-diseased rat or human serum. After tryptic digest, peptides were separated using C18 reverse phase liquid chromatography-tandem mass spectrometry (rpLC-MS/MS). Peptide spectral matching (PSM) and database searching was conducted using MS Amanda 2.0 and Sequest HT. Peptide and protein false discovery rates (FDR) were set at 0.01%, with at least two peptides assigned per protein. Protein quantitation and the extent of albumin and Ig removal was defined by PSM counts. Venn diagram analysis of the core proteomes, derived from proteins identified by both search engines, was performed using Venny. Ontological characterization and gene set enrichment were performed using WebGestalt. The dataset resulting from each depletion column is provided.

12.
J Neurotrauma ; 37(13): 1574-1586, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31973644

ABSTRACT

Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cathepsin B/metabolism , Cysteine Proteases/metabolism , Head Injuries, Penetrating/metabolism , Animals , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Brain Injuries, Traumatic/cerebrospinal fluid , Cathepsin B/cerebrospinal fluid , Craniotomy/adverse effects , Cysteine Proteases/cerebrospinal fluid , Enzyme Activation/physiology , Head Injuries, Penetrating/cerebrospinal fluid , Humans , Male , Rats , Rats, Sprague-Dawley
13.
J Neurotrauma ; 37(4): 656-664, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31595817

ABSTRACT

Polytrauma, with combined traumatic brain injury (TBI) and systemic damage are common among military and civilians. However, the pathophysiology of peripheral organs following polytrauma is poorly understood. Using a rat model of TBI combined with hypoxemia and hemorrhagic shock, we studied the status of peripheral redox systems, liver glycogen content, creatinine clearance, and systemic inflammation. Male Sprague-Dawley rats were subjected to hypoxemia and hemorrhagic shock insults (HH), penetrating ballistic-like brain injury (PBBI) alone, or PBBI followed by hypoxemia and hemorrhagic shock (PHH). Sham rats received craniotomy only. Biofluids and liver, kidney, and heart tissues were collected at 1 day, 2 days, 7 days, 14 days, and 28 days post-injury (DPI). Creatinine levels were measured in both serum and urine. Glutathione levels, glycogen content, and superoxide dismutase (SOD) and cytochrome C oxidase enzyme activities were quantified in the peripheral organs. Acute inflammation marker serum amyloid A-1 (SAA-1) level was quantified using western blot analysis. Urine to serum creatinine ratio in PHH group was significantly elevated on 7-28 DPI. Polytrauma induced a delayed disruption of the hepatic GSH/GSSG ratio, which resolved within 2 weeks post-injury. A modest decrease in kidney SOD activity was observed at 2 weeks after polytrauma. However, neither PBBI alone nor polytrauma changed the mitochondrial cytochrome C oxidase activity. Hepatic glycogen levels were reduced acutely following polytrauma. Acute inflammation marker SAA-1 showed a significant increase at early time-points following both systemic and brain injury. Overall, our findings demonstrate temporal cytological/tissue level damage to the peripheral organs due to combined PBBI and systemic injury.


Subject(s)
Head Injuries, Penetrating/complications , Hypoxia/complications , Kidney/metabolism , Liver/metabolism , Myocardium/metabolism , Shock, Hemorrhagic/complications , Animals , Cytochromes c/metabolism , Disease Models, Animal , Glutathione/metabolism , Glycogen/metabolism , Head Injuries, Penetrating/metabolism , Hypoxia/metabolism , Male , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/metabolism , Superoxide Dismutase/metabolism
14.
PLoS One ; 14(8): e0221036, 2019.
Article in English | MEDLINE | ID: mdl-31408492

ABSTRACT

Repeated exposure to blast overpressure remains a major cause of adverse health for military personnel who, as a consequence, are at a higher risk for neurodegenerative disease and suicide. Acute, early tracking of blast related effects holds the promise of rapid health assessment prior to onset of chronic problems. Current techniques used to determine blast-related effects rely upon reporting of symptomology similar to that of concussion and neurocognitive assessment relevant to operational decrement. Here, we describe the results of a cross sectional study with pared observations. The concentration of multiple TBI-related proteins was tested in serum collected within one hour of blast exposure as a quantitative and minimally invasive strategy to augment assessment of blast-exposure effects that are associated with concussion-like symptomology and reaction time decrements. We determined that median simple reaction time (SRT) was slowed in accordance with serum Nf-L, tau, Aß-40, and Aß-42 elevation after overpressure exposure. In contrast, median levels of serum GFAP decreased. Individual, inter-subject analysis revealed positive correlations between changes in Nf-L and GFAP, and in Aß-40 compared to Aß-42. The change in Nf-L was negatively associated with tau, Aß-40, and Aß-42. Participants reported experiencing headaches, dizziness and taking longer to think. Dizziness was associated with reaction time decrements, GFAP or NfL suppression, as well as Aß peptide elevation. UCH-L1 elevation had a weak association with mTBI/concussion history. Multiplexed serum biomarker quantitation, coupled with reaction time assessment and symptomology determined before and after blast exposure, may serve as a platform for tracking adverse effects in the absence of a head wound or diagnosed concussion. We propose further evaluation of serum biomarkers, which are often associated with TBI, in the context of acute operational blast exposures.


Subject(s)
Blast Injuries/blood , Brain Concussion/blood , Brain/metabolism , Military Personnel , Nerve Tissue Proteins/blood , Adult , Biomarkers/blood , Blast Injuries/pathology , Blast Injuries/physiopathology , Brain/pathology , Brain/physiopathology , Brain Concussion/pathology , Brain Concussion/physiopathology , Cohort Studies , Cross-Sectional Studies , Humans , Male
15.
Front Neurol ; 10: 699, 2019.
Article in English | MEDLINE | ID: mdl-31312174

ABSTRACT

Close-head concussive injury, as one of the most common forms of traumatic brain injury (TBI), has been shown to induce cognitive deficits that are long lasting. A concussive impact model was previously established in our lab that produces clinically relevant signs of concussion and induced acute pathological changes in rats. To evaluate the long-term effects of repeated concussions in this model, we utilized a comprehensive Morris water maze (MWM) paradigm for cognitive assessments at 1 and 6 months following repeated concussive impacts in rats. As such, adult Sprague-Dawley rats received either anesthesia (sham) or repeated concussive impacts (4 consecutive impacts at 1 h interval). At 1 month post-injury, results of the spatial learning task showed that the average latencies to locate the hidden "escape" platform were significantly longer in the injured rats over the last 2 days of the MWM testing compared to sham controls (p < 0.05). In the memory retention task, rats subjected to repeated concussive impacts also spent significantly less time in the platform zone searching for the missing platform during the probe trial (p < 0.05). On the working memory task, the injured rats showed a trend toward worse performance, but this failed to reach statistical significance compared to sham controls (p = 0.07). At 6 months post-injury, no differences were detected between the injured group and sham controls in either the spatial learning or probe trials. However, rats with repeated concussive impacts exhibited significantly worsened working memory performance compared to sham controls (p < 0.05). In addition, histopathological assessments for axonal neurodegeneration using silver stain showed that repeated concussive impacts induced significantly more axonal degeneration in the corpus callosum compared to sham controls (p < 0.05) at 1 month post-injury, whereas such difference was not observed at 6 months post-injury. Overall, the results show that repeated concussive impacts in our model produced significant cognitive deficits in both spatial learning abilities and in working memory abilities in a time-dependent fashion that may be indicative of progressive pathology and warrant further investigation.

16.
Front Neurol ; 10: 605, 2019.
Article in English | MEDLINE | ID: mdl-31244764

ABSTRACT

Mitochondria constitute a central role in brain energy metabolism, and play a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death following traumatic brain injury (TBI). Under normal circumstances, the brain consumes glucose as the preferred energy source for adenosine triphosphate (ATP) production over ketones. To understand the comprehensive picture of substrate-specific mitochondrial bioenergetics responses following TBI, adult male rats were subjected to either 10% unilateral penetrating ballistic-like brain injury (PBBI) or sham craniectomy (n = 5 animals per group). At 24 h post-injury, mitochondria were isolated from pooled brain regions (frontal cortex and striatum) of the ipsilateral hemisphere. Mitochondrial bioenergetics parameters were measured ex vivo in the presence of four sets of metabolic substrates: pyruvate+malate (PM), glutamate+malate (GM), succinate (Succ), and ß-hydroxybutyrate+malate (BHBM). Additionally, mitochondrial matrix dehydrogenase activities [i.e., pyruvate dehydrogenase complex (PDHC), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), and glutamate dehydrogenase (GDH)] and mitochondrial membrane-bound dehydrogenase activities [i.e., electron transport chain (ETC) Complex I, II, and IV] were compared between PBBI and sham groups. Furthermore, mitochondrial coenzyme contents, including NAD(t) and FAD(t), were quantitatively measured in both groups. Collectively, PBBI led to an overall significant decline in the ATP synthesis rates (43-50%; * p < 0.05 vs. sham) when measured using each of the four sets of substrates. The PDHC and GDH activities were significantly reduced in the PBBI group (42-53%; * p < 0.05 vs. sham), whereas no significant differences were noted in α-KGDHC activity between groups. Both Complex I and Complex IV activities were significantly reduced following PBBI (47-81%; * p < 0.05 vs. sham), whereas, Complex II activity was comparable between groups. The NAD(t) and FAD(t) contents were significantly decreased in the PBBI group (27-35%; * p < 0.05 vs. sham). The decreased ATP synthesis rates may be due to the significant reductions in brain mitochondrial dehydrogenase activities and coenzyme contents observed acutely following PBBI. These results provide a basis for the use of "alternative biofuels" for achieving higher ATP production following severe penetrating brain trauma.

17.
Mil Med ; 184(Suppl 1): 291-300, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30901408

ABSTRACT

This study assessed the effect of caffeine on neurobehavioral recovery in the WRAIR penetrating ballistic-like brain injury (PBBI) model. Unilateral frontal PBBI was produced in the right hemisphere of anesthetized rats at moderate (7%-PBBI) or severe (10%-PBBI) injury levels. Animals were randomly assigned to pretreatment groups: acute caffeine (25 mg/kg CAF gavage, 1 h prior to PBBI), or chronic caffeine (0.25 g/L CAF drinking water, 30 days prior to PBBI). Motor function was evaluated on the rotarod at fixed-speed increments of 10, 15, and 20 RPM. Cognitive performance was evaluated on the Morris water maze. Acute caffeine showed no significant treatment effect on motor or cognitive outcome. Acute caffeine exposure prior to 10%-PBBI resulted in a significantly higher thigmotaxic response compared to vehicle-PBBI groups, which may indicate caffeine exacerbates post-injury anxiety/attention decrements. Results of the chronic caffeine study revealed a significant improvement in motor outcome at 7 and 10 days post-injury in the 7%-PBBI group. However, chronic caffeine exposure significantly increased the latency to locate the platform in the Morris water maze task at all injury levels. Results indicate that chronic caffeine consumption prior to a penetrating TBI may provide moderate beneficial effects to motor recovery, but may worsen the neurocognitive outcome.


Subject(s)
Caffeine/pharmacology , Cognition/drug effects , Head Injuries, Penetrating/drug therapy , Motor Activity/drug effects , Analysis of Variance , Animals , Caffeine/therapeutic use , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/therapeutic use , Cognition/physiology , Disease Models, Animal , Head Injuries, Penetrating/physiopathology , Male , Motor Activity/physiology , Rats , Rats, Sprague-Dawley/injuries , Rotarod Performance Test , Treatment Outcome
18.
J Neurotrauma ; 36(2): 348-359, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29987972

ABSTRACT

Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), markers of glial and neuronal cell body injury, respectively, have been previously selected by the Operation Brain Trauma Therapy (OBTT) pre-clinical therapy and biomarker screening consortium as drug development tools. However, traumatic axonal injury (TAI) also represents a major consequence and determinant of adverse outcomes after traumatic brain injury (TBI). Thus, biomarkers capable of assessing TAI are much needed. Neurofilaments (NFs) are found exclusively in axons. Here, we evaluated phospho-neurofilament-H (pNF-H) protein as a possible new TAI marker in serum and cerebrospinal fluid (CSF) across three rat TBI models in studies carried out by the OBTT consortium, namely, controlled cortical impact (CCI), parasagittal fluid percussion (FPI), and penetrating ballistics-like brain injury (PBBI). We indeed found that CSF and serum pNF-H levels are robustly elevated by 24 h post-injury in all three models. Further, in previous studies by OBTT, levetiracetam showed the most promising benefits, whereas nicotinamide showed limited benefit only at high dose (500 mg/kg). Thus, serum samples from the same repository collected by OBTT were evaluated. Treatment with 54 mg/kg intravenously of levetiracetam in the CCI model and 170 mg/kg in the PBBI model significantly attenuated pNF-H levels at 24 h post-injury as compared to respective vehicle groups. In contrast, nicotinamide (50 or 500 mg/kg) showed no reduction of pNF-H levels in CCI or PBBI models. Our current study suggests that pNF-H is a useful theranostic blood-based biomarker for TAI across different rodent TBI models. In addition, our data support levetiracetam as the most promising TBI drug candidate screened by OBTT to date.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Neurofilament Proteins/blood , Animals , Biomarkers/cerebrospinal fluid , Brain Injuries, Traumatic/cerebrospinal fluid , Disease Models, Animal , Levetiracetam/pharmacology , Neurofilament Proteins/cerebrospinal fluid , Niacinamide/pharmacology , Nootropic Agents/pharmacology , Rats , Rats, Sprague-Dawley , Theranostic Nanomedicine/methods , Vitamin B Complex/pharmacology
19.
Front Neurol ; 10: 1309, 2019.
Article in English | MEDLINE | ID: mdl-31920932

ABSTRACT

Trauma is among the leading causes of death in the United States. Technological advancements have led to the development of resuscitative endovascular balloon occlusion of the aorta (REBOA) which offers a pre-hospital option to non-compressible hemorrhage control. Due to the prevalence of concomitant traumatic brain injury (TBI), an understanding of the effects of REBOA on cerebral physiology is critical. To further this understanding, we employed a rat model of penetrating ballistic-like brain injury (PBBI). PBBI produced an injury pattern within the right frontal cortex and striatum that replicates the pathology from a penetrating ballistic round. Aortic occlusion was initiated 30 min post-PBBI and maintained continuously (cAO) or intermittently (iAO) for 30 min. Continuous measurements of mean arterial pressure (MAP), intracranial pressure (ICP), cerebral blood flow (CBF), and brain tissue oxygen tension (PbtO2) were recorded during, and for 60 min following occlusion. PBBI increased ICP and decreased CBF and PbtO2. The arterial balloon catheter effectively occluded the descending aorta which augmented MAP in the carotid artery. Despite this, CBF levels were not changed by aortic occlusion. iAO caused sustained adverse effects to ICP and PbtO2 while cAO demonstrated no adverse effects on either. Temporary increases in PbtO2 were observed during occlusion, along with restoration of sham levels of ICP for the remainder of the recordings. These results suggest that iAO may lead to prolonged cerebral hypertension following PBBI. Following cAO, ICP, and PbtO2 levels were temporarily improved. This information warrants further investigation using TBI-polytrauma model and provides foundational knowledge surrounding the non-hemorrhage applications of REBOA including neurogenic shock and stroke.

20.
Front Neurol ; 9: 964, 2018.
Article in English | MEDLINE | ID: mdl-30498469

ABSTRACT

Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.

SELECTION OF CITATIONS
SEARCH DETAIL
...